29 research outputs found

    The devices, experimental scaffolds, and biomaterials ontology (DEB): a tool for mapping, annotation, and analysis of biomaterials' data

    Get PDF
    The size and complexity of the biomaterials literature makes systematic data analysis an excruciating manual task. A practical solution is creating databases and information resources. Implant design and biomaterials research can greatly benefit from an open database for systematic data retrieval. Ontologies are pivotal to knowledge base creation, serving to represent and organize domain knowledge. To name but two examples, GO, the gene ontology, and CheBI, Chemical Entities of Biological Interest ontology and their associated databases are central resources to their respective research communities. The creation of the devices, experimental scaffolds, and biomaterials ontology (DEB), an open resource for organizing information about biomaterials, their design, manufacture, and biological testing, is described. It is developed using text analysis for identifying ontology terms from a biomaterials gold standard corpus, systematically curated to represent the domain's lexicon. Topics covered are validated by members of the biomaterials research community. The ontology may be used for searching terms, performing annotations for machine learning applications, standardized meta-data indexing, and other cross-disciplinary data exploitation. The input of the biomaterials community to this effort to create data-driven open-access research tools is encouraged and welcomed.Preprin

    Pragmatic Ontology Evolution: Reconciling User Requirements and Application Performance

    Get PDF
    Increasingly, organizations are adopting ontologies to describe their large catalogues of items. These ontologies need to evolve regularly in response to changes in the domain and the emergence of new requirements. An important step of this process is the selection of candidate concepts to include in the new version of the ontology. This operation needs to take into account a variety of factors and in particular reconcile user requirements and application performance. Current ontology evolution methods focus either on ranking concepts according to their relevance or on preserving compatibility with existing applications. However, they do not take in consideration the impact of the ontology evolution process on the performance of computational tasks – e.g., in this work we focus on instance tagging, similarity computation, generation of recommendations, and data clustering. In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a novel approach for selecting from a group of candidates a set of concepts able to produce a new version of a given ontology that i) is consistent with the a set of user requirements (e.g., max number of concepts in the ontology), ii) is parametrised with respect to a number of dimensions (e.g., topological considerations), and iii) effectively supports relevant computational tasks. Our approach also supports users in navigating the space of possible solutions by showing how certain choices, such as limiting the number of concepts or privileging trendy concepts rather than historical ones, would reflect on the application performance. An evaluation of POE on the real-world scenario of the evolving Springer Nature taxonomy for editorial classification yielded excellent results, demonstrating a significant improvement over alternative approaches

    Development of an ehealth tool for cancer patients: Monitoring psycho-emotional aspects with the family resilience (fare) questionnaire

    Get PDF
    In the last decade, clinicians have started to shift from an individualistic perspective of the patient towards family-centred models of care, due to the increasing evidence from research and clinical practice of the crucial role of significant others in determining the patient's adjustment to cancer disease and management. eHealth tools can be considered a means to compensate the services gap and support outpatient care flows. Within the works of the European H2020 iManageCancer project, a review of the literature in the field of family resilience was conducted, in order to determine how to monitor the patient and his/her family's resilience through an eHealth platform. An analysis of existing family resilience questionnaires suggested that no measure was appropriate for cancer patients and their families. For this reason, a new family resilience questionnaire (named FaRe) was developed to screen the patient's and caregiver's psycho-emotional resources. Composed of 24 items, it is divided into four subscales: Communication and Cohesion, Perceived Family Coping, Religiousness and Spirituality, and Perceived Social Support. Embedded in the iManageCancer eHealth platform, it allows users and clinicians to monitor the patient's and the caregivers' resilience throughout the cancer trajector

    Psycho-emotional tools for better treatment adherence and therapeutic outcomes for cancer patients

    Get PDF
    Personalized medicine should target not only the genetic and clinical aspects of the individual patients but also the different cognitive, psychological, family and social factors involved in various clinical choices. To this direction, in this paper, we present instruments to assess the psycho-emotional status of cancer patients and to evaluate the resilience in their family constructing in such a way an augmented patient profile. Using this profile, 1) information provision can be tailored according to patients characteristics; 2) areas of functioning can be monitored both by the patient and by the clinicians, providing suggestions and alerts; 3) personalized decision aids can be develop to increase patient's participation in the consultation process with their physicians and improve their satisfaction and involvement in the decision-making process. Our preliminary evaluation shows promising results and the potential benefits of the tools

    Development of interactive empowerment services in support of personalised medicine

    Get PDF
    In an epoch where shared decision making is gaining importance, a patient\u2019s commitment to and knowledge about his/her health condition is becoming more and more relevant. Health literacy is one of the most important factors in enhancing the involvement of patients in their care. Nevertheless, other factors can impair patient processing and understanding of health information: psychological aspects and cognitive style may affect the way patients approach, select, and retain information. This paper describes the development and validation of a short and easy to fill-out questionnaire that measures and collects psycho-cognitive information about patients, named ALGA-C. ALGA-C is a multilingual, multidevice instrument, and its validation was carried out in healthy people and breast cancer patients. In addition to the aforementioned questionnaire, a patient profiling mechanism has also been developed. The ALGA-C Profiler enables physicians to rapidly inspect each patient\u2019s individual cognitive profile and see at a glance the areas of concern. With this tool, doctors can modulate the language, vocabulary, and content of subsequent discussions with the patient, thus enabling easier understanding by the patient. This, in turn, helps the patient formulate questions and participate on an equal footing in the decision-making processes. Finally, a preview is given on the techniques under consideration for exploiting the constructed patient profile by a personal health record (PHR). Predefined rules will use a patient\u2019s profile to personalise the contents of the information presented and to customise ways in which users complete their tasks in a PHR system. This optimises information delivery to patients and makes it easier for the patient to decide what is of interest to him/her at the moment

    the development of imanagecancer the experience of a personalised ehealth platform for cancer patients empowerment

    Get PDF
    Advances in cancer research led to more cancer patients being cured and many more being enabled to live with their cancer. There is an increasing need for cancer patients to take an active, leading role in their healthcare, thus resulting in a better quality of life. Identification of self-management processes for cancer can help to guide future research and clinical practice to improve patient's outcome. In the present chapter, we discuss the development of iManageCancer, a cancer-specific self-management and patient empowerment platform designed according to the needs of patient groups while focusing, in parallel, on the wellbeing of the cancer patients and their families. A Personal Health Record platform (iPHR) is developed, featuring self-management tools including serious games. Emphasis was put on psychoemotional evaluation and self-motivated goals. The use-case requirements and the corresponding system architecture are presented, and the main technological components of the designed platform are described

    Personal eHealth Knowledge Spaces though Models, Agents and Semantics

    No full text

    Letter to editor: the burden of covid-19 in neuro-oncological patients

    No full text
    corecore